Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 288

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Assessment of ambient dose equivalent rate distribution patterns in a forested-rugged terrain using field-measured and modeled dose equivalent rates

Yasumiishi, Misa*; Masoudi, P.*; Nishimura, Taku*; Ochi, Kotaro; Ye, X.*; Aldstadt, J.*; Komissarov, M.*

Radiation Measurements, 168, p.106978_1 - 106978_16, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In this study, we surveyed air dose rates using hand-held and backpack-type scintillators in a forest of deciduous and evergreen trees in Fukushima Prefecture, Japan. The effects of topographic features on air dose rates were examined using multivariate adaptive regression splines (MARS) against five selected topographic parameters. The air dose rates were distributed unevenly in the forest, and air dose rates varied by more than 1$$mu$$Sv/h as a function of time, likely owing to ground wetness etc. The effect of different topographic parameters varied between survey dates. The MARS model predictions with all topographic parameters yielded an R$$^{2}$$ of 0.54 or higher. To discuss whether the effect of topography on air dose rates and soil contamination levels is consistent, air dose rates measured in the field were compared with those estimated from the depth profile of radiocesium in soil. Most air dose rates estimated from the soil samples were in the range of field measurements.

Journal Articles

Visual analysis of air dose rate maps

Takahashi, Shigeo*; Sakurai, Daisuke*; Nagao, Fumiya; Kurikami, Hiroshi; Sanada, Yukihisa

Shimyureshon, 42(2), p.68 - 75, 2023/06

This paper introduces a case in which scientific knowledge on understanding the deposition process of radionuclides and evaluating the dose rate reduction due to decontamination work was obtained through visual analysis based on data on the spatio-temporal distribution of air dose rates accumulated through radiation monitoring after the accident. We will discuss the prospects for future efforts to effectively obtain important knowledge that will assist in the planning of policies for reconstruction from the nuclear power plant accident in the future.

Journal Articles

Purposeful adaptive sampling of integrated air dose rate maps for visual analysis

Takahashi, Shigeo*; Kurikami, Hiroshi; Sanada, Yukihisa; Sakurai, Daisuke*

ERAN FY2022 Annual Report (Internet), 1 Pages, 2023/04

This study aims to establish a highly accurate evaluation technique for decontamination effects through multilateral and quantitative evaluation of decontamination effects. The applicability of the visual analysis technique was confirmed through a trial analysis.

Journal Articles

Radiation distribution around Fukushima Daiichi Nuclear Power Station decade after the accident

Sanada, Yukihisa; Sasaki, Miyuki; Kurikami, Hiroshi; Mikami, Satoshi

Journal of Nuclear Fuel Cycle and Waste Technology, 21(1), p.95 - 114, 2023/03

During the decades after the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, ambient dose rates have markedly decreased when compared to those at the early state of the accident. Government projects have been continuously conducted by surveying the ambient dose rate and radiocesium distributions. Airborne surveys using crewed helicopters and unmanned aerial vehicles (UAVs) are the best methods for obtaining an overall picture of the distribution. However, ground-based surveys are required for accurate measurements near the population. The differences between these methods include the knowledge of the post depositional behavior of radionuclides in land use. The survey results form the basis for policy decisions such as lifting evacuation zones, decontamination, and other countermeasures. These surveys contain crucial findings regarding post-accident responses. This paper reviews the survey methods of government projects and current situation around the FDNPS. The visualization methods and databases of ambient dose rates are also reviewed to provide information to the population.

Journal Articles

Confirmation of the sustainability of decontamination effects in public facilities and prediction of future air dose rates

Kusakabe, Kazuaki*; Watanabe, Masanori; Nishiuchi, Masashi*; Yamasaki, Takuhei*; Inoue, Hiromi*

Kankyo Hoshano Josen Gakkai-Shi, 11(1), p.15 - 23, 2023/03

The spread of radioactive materials caused by the Fukushima Daiichi Nuclear Power Plant accident that occurred in March 2011 contaminated a wide area that includes Fukushima Prefecture. Although air dose rates in Fukushima Prefecture have been steadily decreasing because of decontamination and the physical decay of radioactive materials, it is important to confirm the sustainability of decontamination effects in living areas and to predict future trends in air dose rates to reassure residents who are concerned regarding radiation exposure. This report aims to confirm the sustainability of the decontamination effects in public facilities after decontamination on a continuous and detailed basis, and to verify whether the future transition in air dose rates can be predicted using existing model. The air dose rates in public facilities after decontamination were measured via fixed-point and walking surveys, and the changes in air dose rates were clarified quantitatively for each facility. The measured values were compared with values obtained using existing model, and prediction accuracy was considered. The results showed that there was no evident recontamination after decontamination at any of the surveyed facilities, indicating that the decontamination effects were sustained. It was also confirmed that future trends in air dose rates at the facilities after decontamination could be accurately predicted by existing model. Key words: air dose rate, decontamination, future prediction, public facilities.

Journal Articles

Validation study of ambient dose equivalent conversion coefficients for radiocaesium distributed in the ground; Lessons from the Fukushima Daiichi Nuclear Power Station accident

Ochi, Kotaro; Funaki, Hironori; Yoshimura, Kazuya; Iimoto, Takeshi*; Matsuda, Norihiro; Sanada, Yukihisa

Radiation and Environmental Biophysics, 61(1), p.147 - 159, 2022/03

 Times Cited Count:2 Percentile:47.19(Biology)

Journal Articles

Joint environmental radiation survey by JAEA and KAERI around the Fukushima Daiichi Nuclear Power Plant; Performance of mobile gamma-ray spectrometry using backpack and carborne survey platforms

Ji, Y.-Y.*; Ochi, Kotaro; Hong, S. B.*; Nakama, Shigeo; Sanada, Yukihisa; Mikami, Satoshi

Health Physics, 121(6), p.613 - 620, 2021/12

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

According to the implementing arrangement between JAEA (Japan Atomic Energy Agency) and KAERI (Korea Atomic Energy Research Institute) in the field of the radiation protection and environmental radiation monitoring, the joint measurement has been conducted to assess the radioactive cesium deposition in the ground around the Fukushima Daiichi Nuclear Power Plants (FDNPP). First, mobile gamma-ray spectrometry using backpack survey platform was conducted to assess the distribution of dose rate around specific three survey sites. The carborne survey using gamma-ray spectrometers, as loading inside a vehicle, was successfully conducted to compare measured dose rates in routes from site to site and verify evaluation methods including the attenuation correction.

Journal Articles

Validation of ATDMs at early after the lF accident using air dose rate estimated by airborne concentration and surface deposition density

Moriguchi, Yuichi*; Sato, Yosuke*; Morino, Yu*; Goto, Daisuke*; Sekiyama, Tsuyoshi*; Terada, Hiroaki; Takigawa, Masayuki*; Tsuruta, Haruo*; Yamazawa, Hiromi*

KEK Proceedings 2021-2, p.21 - 27, 2021/12

no abstracts in English

Journal Articles

Present status and future perspective of R&D for 3D-ADRES (3-Dimensional Air Dose Rate Evaluation System); Evaluation scheme for air dose rate distributions in city and forest areas towards Fukushima's revitalization

Kim, M.; Malins, A.; Machida, Masahiko; Yoshimura, Kazuya; Saito, Kimiaki; Yoshida, Hiroko*; Yanagi, Hideaki*; Yoshida, Toru*; Hasegawa, Yukihiro*

RIST News, (67), p.3 - 15, 2021/09

no abstracts in English

Journal Articles

An Approach toward evaluation of long-term fission product distributions in the Fukushima Daiichi Nuclear Power Plant after the severe accident

Uchida, Shunsuke; Karasawa, Hidetoshi; Kino, Chiaki*; Pellegrini, M.*; Naito, Masanori*; Osaka, Masahiko

Nuclear Engineering and Design, 380, p.111256_1 - 111256_19, 2021/08

 Times Cited Count:6 Percentile:72.21(Nuclear Science & Technology)

It is essential to grasp the long-term distributions of FP as well as fuel debris all over the Fukushima Daiichi Nuclear Power Plant (1F) for safe completion of its decommissioning projects. The fuel debris is going to be removed from the plant under the severe conditions of FP being scattered during major decommissioning work, and then, the decommissioning projects are going to be terminated by storing safely the removed debris as recovered fertile materials or as materials for final radioactive disposal. In order to determine the FP distribution in the plant for the long period from the accident occurrence to the termination of the plant decommissioning, procedures for analyzing multi-term FP behaviors were proposed. The proposed procedures should be improved by applying the FP data measured in the plant and validated based on the feedback data. Then, the accuracy-improved procedures should be applied to estimate FP distribution during each period of the decommissioning projects.

Journal Articles

Conversion factors bridging radioactive fission product distributions in the primary containment vessel of Fukushima Daiichi NPP and dose rates measured by the containment atmosphere monitoring system

Uchida, Shunsuke; Pellegrini, M.*; Naito, Masanori*

Nuclear Engineering and Design, 380, p.111303_1 - 111303_11, 2021/08

 Times Cited Count:1 Percentile:16.35(Nuclear Science & Technology)

Multi-term FP analysis procedures were developed to determine FP distribution all over F1 not only for analyzing accident propagation but also for planning its decommissioning projects. They should be validated based on the measured FP data. One of the useful tools for their validation was application of the dose rate data monitored by the containment atmosphere monitoring system (CAMS). However, in order to compare the data with different characteristics and dimensional units, e.g., FP distribution (kg, Bq) and dose rate (Sv/h), application of the conversion factors bridging them would be effective and useful. In order to prepare speedy, easy-to-handle and tractable procedures to calculate radiation dose rates at the CAMS detector locations, dose rate conversion factors were determined for major source locations and major radionuclides. The dose rates could be easily calculated by multiplying FP amounts obtained with the multiterm FP analysis procedures by the conversion factors.

Journal Articles

Estimation of the dose rate distribution in the primary containment vessel of Fukushima Daiichi Nuclear Power Plants

Okumura, Keisuke

Fission Product Behavior under Severe Accident, p.116 - 121, 2021/05

no abstracts in English

Journal Articles

Journal Articles

Geographical distribution of ground deposition density and ambient dose rate, and temporal change of dose rate

Saito, Kimiaki

Tokyo Denryoku Fukushima Daiichi Genshiryoku Hatsudensho Jiko Ni Yoru Kankyo Osen No Kenkyu Chosa No Shinten To Kadai (Internet), p.8 - 10, 2020/07

no abstracts in English

Journal Articles

Research and development behind a computation system for 3D distributions of air dose rates in the environment; Estimating environmental radiation doses using PHITS together with remote sensing data

Kim, M.; Malins, A.; Sakuma, Kazuyuki; Kitamura, Akihiro; Machida, Masahiko; Hasegawa, Yukihiro*; Yanagi, Hideaki*

Isotope News, (765), p.30 - 33, 2019/10

Here we outline a system for generating three dimensional models of urban and rural areas in Fukushima Prefecture. The $$^{134}$$Cs and $$^{137}$$Cs radioactivity distribution can be set flexibly across the different components of the model. The models incorporate realistic representations of local buildings, individual conifer and broadleaf trees, and the topography of the land surface. The system is demonstrated by modelling a suburban area 4 km from the Fukushima Daiichi Nuclear Power Plant that has yet to be decontaminated. Air dose rates calculated in PHITS were correlated with measurements taken across the site in a car-borne survey.

Journal Articles

Time-dependent change of radiation levels in the 80 km zone for five years after the Fukushima accident

Saito, Kimiaki

Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.38 - 43, 2019/09

 Times Cited Count:0

no abstracts in English

Journal Articles

Influence of artificial radionuclide deposited on a monitoring post on measured value of ambient dose rate

Hiraoka, Hirokazu; Hokama, Tomonori; Munakata, Masahiro

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Neighboring inhabitants of nuclear facilities must evacuate according to an ambient dose rate at a nuclear accident. The evacuation is judged by the measured value by monitoring posts (MPs). However, if the measured value increase by artificial radionuclide deposited to MP, it is considered that the dose rate of the surrounding environment is overestimated. The purpose of this research is to evaluate exactly the dose rate even if the radionuclide deposit to the MP, in order to adequately evacuate inhabitants. Just a MP and horizontal ground was simulated. To calculate ambient dose rates from the roof surface of MP and ground surface, Monte Carlo calculation was done. And, it was obtained that the ratio which the dose rate from the roof account for sum of two these dose rates. According to the result, the ratio was 42%. It suggested that the radionuclide could increase the measured value. However, because simulated system was simple, it is considered that the ratio was overestimated.

Journal Articles

7.1 Environmental contamination due to radionuclides

Saito, Kimiaki

Genshiryoku No Ima To Ashita, p.148 - 151, 2019/03

no abstracts in English

Journal Articles

A Method for the prediction of the dose rate distribution in a primary containment vessel of the Fukushima Daiichi Nuclear Power Station

Okumura, Keisuke; Riyana, E. S.; Sato, Wakaei*; Maeda, Hirobumi*; Katakura, Junichi*; Kamada, So*; Joyce, M. J.*; Lennox, B.*

Progress in Nuclear Science and Technology (Internet), 6, p.108 - 112, 2019/01

In order to establish the prediction method of the dose rate distribution in the primary containment vessel (PCV) of the Fukushima Daiichi Nuclear Power Station, a series of calculations were carried out in the following way; (1) burnup calculation to obtain fuel composition at the time of accident, (2) activation calculation for the structural materials including impurities, (3) estimation of Cs contamination in PCV based on the result of severe accident analysis by IRID, (4) decay calculation of radioactive nuclides, (5) photon transport calculation to obtain dose rate distribution. After that, Cs concentration around the dry-well of 1F was modified to be consistent with locally measured dose rates in the PCV-investigation by IRID.

Journal Articles

Review of the performance of a car-borne survey system, KURAMA-II, used to measure the dose rate after the Fukushima Dai-ichi Nuclear Power Plant accident

Tsuda, Shuichi; Tanigaki, Minoru*; Yoshida, Tadayoshi; Saito, Kimiaki

Hoshasen, 44(3), p.109 - 118, 2018/11

JAEA has started to perform dose rate monitoring using a car-borne survey system KURAMA to rapidly produce the dose rate mappings of the deposited radionuclides in the environment after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA is a car-borne survey system developed by Kyoto University to perform dose rate monitoring in a wide area in detail with rapidity. By improving KURAMA with continuous dose rate monitoring, the 2nd generation of KURAMA (KURAMA-II) succeeded in downsizing, durability and automated transmission of data so that enable detailed dose rate mapping in wide area in shorter period of time. This paper reports the radiation characteristics and the simulation analysis of KURAMA-II on the special issue of Hoshasen, the journal of Ionization Radiation Division in the Japan society of applied physics.

288 (Records 1-20 displayed on this page)